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Our laboratory is engaged in a program of synthesis
of enantiopure, densely-functionalized, bioactive targets.!
Characteristics of our strategy are the use of simple
achiral starting materials, such as cyclopentadiene,
benzene, and cycloheptatriene, and the use of biocatalysis
as a key step for the introduction of absolute stereochem-
istry.? In this context, the readily available, inexpensive
Pp-benzoquinone and the bioactive natural products of the
epoxyquinol class attracted our interest as starting
material and targets, respectively. Epoxyquinol natural
products, typified by (+)-bromoxone,? LL-C100370.,3 (+)-
epiepoformin,® and the more tomplex manumycin A3
(Chart 1), exhibit antifungal and antitumor properties.
(+)-Bromoxone and its acetate were isolated from marine
acorn worms (Phylum Hemichordata, order Entero-
pneusta) by Higa and co-workers in 1987.32 The absolute
and relative stereochemistry were determined via X-ray
analysis of the acetate. The acetylated derivative dis-
played activity toward P388 cells (ICso = 10 ng/mL). Only
one synthesis of bromoxone has appreared, and that is
in racemic form.* Herein we describe chemoenzymatic
routes to both bromoxone enantiomers from p-benzo-
quinone.

The C; symmetric diol (£)-1, prepared via bromination/
reduction of p-benzoquinone,® was converted into the
known diacetate (+)-2.5 The hydrolysis of (+)-2 (7 g) with
crude Pseudomonas cepacia lipase (Amano PS-30) (7 g)
in pH 8 phosphate buffer at 50 °C over 16 h was found
to be quite effective; the diacetate (+)-2 (26%, 298% ee)
and the diol (+)-1 (47%, 90% ee) were obtained (Scheme
1)_7,8
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The enantiomeric excess of the diol (+)-1 was deter-
mined by transformation to the Mosher ester derivative
5 as depicted in Scheme 2. The diol (+)-1 was converted
into the mono-TBS-protected diol (+)-8 (TBSOT{Et;N),
and the subsequent dibromo alcohol (+)-3 was selectively
debrominated to the monobromo alcohol (—)-4 (LiAlH,/
Et;0). Esterification of the alcohol (—)-4 with the (R)-
Mosher acid (DCC, DMAP, CH,Cl;) furnished the ester
derivative 5 (Scheme 2). Analysis of the ester 5 derived
from (£)-1 and enantioenriched (+)-1 indicated an enan-
tiomeric excess of 290% (500 MHz, 'H NMR) for the
latter; one recrystallization from hexanes/acetone raised
the enantiomeric excess to =98%. Similarly, the diac-
etate (+)-2 was converted into the diol (~)-1 using
Seebach’s transesterification method (Scheme 1),° and the
diol (—)-1 was converted into its Mosher ester as de-
scribed for (+)-1. The optical purity of the diol (—)-1 was
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found to be 298%. The same enantiomeric excess of the
diacetate (+)-2 was also determined via chiral shift
analysis [(+)-Eu(hfc);, CDCl;].

Alcohol (+)-8 was subjected to buffered CF;COzH (CH,-
Cly/0 °C) which gave the syn-epoxide 7 as a single
diastereomer in 84% yield (Scheme 3).1¢ Oxidation/
elimination of epoxide (+)-7 to the bromoenone (+)-8
proceeded cleanly in 89% yield with CrOs(pyridine)y.!*
Lastly, deprotection of the TBS ether in (+)-8 was
accomplished using DeShong’s protocol (H;SiFs/CH3CN),2
which furnished (+)-bromoxone (8) in 74% yield.'* The
melting point of synthetic (+)-8 was slightly higher than
that reported for natural (+)-6 (138—139 °C vs 123—-127
°C);3 this difference is most likely due to slight impurities
in the isolated material.l* The [a]p reported for natural
(+)-bromoxone (8) was +220 (¢ 0.09, CHCIl3). We found
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that synthetic (+)-8 was only sparingly soluble in CHClj;
we recorded the rotation of our synthetic (+)-6 in acetone
and found [alp +193 (¢ 2.50, acetone). The optical purity
of (+)-bromoxone (6) was determined to be 299% ee by
chiral HPLC analysis.'® In an analogous fashion, (—)-3
was converted into (—)-bromoxone (6) (mp 137—139 °C;
[alp —188 (c 1.85, acetone).

Since the absolute configuration of (+)-bromoxone (8)
had been determined via X-ray analysis of its acetate,
conversion of (+)- and (—)-1 into (+)- and (—)-bromoxone
(8), respectively, established which enantiomer of the
diacetate (+)-2 was hydrolyzed by the enzyme. The
diacetate (—)-2 with the configuration (1R,2S,3S,4R) was
preferentially hydrolyzed (Scheme 4). This is consistent
with the simple model 9 proposed for enzymatic action
of Pseudomonas cepacia (Amano PS-30) toward secondary
aleohols.16

Thus, (+)- and (—)-bromoxone (8) were synthesized in
a very concise fashion from the enzymatically resolved
diols (+)- and (—)-1 in 25% and 29% overall yields,
respectively. These diols should find use in the construc-
tion of more complex targets. Studies along these lines
are in progress.
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