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Our laboratory is engaged in a program of synthesis 
of enantiopure, densely-functionalized, bioactive targets.' 
Characteristics of our strategy are the use of simple 
achiral starting materials, such as cyclopentadiene, 
benzene, and cycloheptatriene, and the use of biocatalysis 
as a key step for the introduction of absolute stereochem- 
istry.2 In this context, the readily available, inexpensive 
p-benzoquinone and the bioactive natural products of the 
epoxyquinol class attracted our interest as starting 
material and targets, respectively. Epoxyquinol natural 
products, typified by (+)-bromoxone,3" LLC10037~,3~ (+I- 
epiep~formin,~~ and the more complex manumycin A3d 
(Chart l), exhibit antifungal and antitumor properties. 
(+)-Bromoxone and its acetate were isolated from marine 
acorn worms (Phylum Hemichordata, order Entero- 
pneusta) by Higa and co-workers in 1987.3a The absolute 
and relative stereochemistry were determined via X-ray 
analysis of the acetate. The acetylated derivative dis- 
played activity toward P388 cells (IC50 = 10 ng/mL). Only 
one synthesis of bromoxone has appreared, and that is 
in racemic Herein we describe chemoenzpatic 
routes to both bromoxone enantiomers from p-benzo- 
quinone. 

The Cp symmetric diol (43-1, prepared via bromination/ 
reduction of p-benzoquinone,5 was converted into the 
known diacetate (&)-2,'j The hydrolysis of (f)-2 (7 g) with 
crude Pseudomonas cepacia lipase (Amano PS-30) (7 g) 
in pH 8 phosphate buffer at 50 "C over 16 h was found 
to be quite effective; the diacetate (+)-2 (26%, 298% ee) 
and the diol (+)-1(47%, 90% ee) were obtained (Scheme 
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The enantiomeric excess of the diol (+)-l was deter- 
mined by transformation to the Mosher ester derivative 
6 as depicted in Scheme 2. The diol (+)-l was converted 
into the mono-TBS-protected diol (+)-3 (TBSOTfYEt3N), 
and the subsequent dibromo alcohol (+)-3 was selectively 
debrominated to the monobromo alcohol (-1-4 (LAW 
EtzO). Esterification of the alcohol (-)-4 with the (R)- 
Mosher acid (DCC, DMAP, CHZC12) furnished the ester 
derivative 5 (Scheme 2). Analysis of the ester 5 derived 
from (f1- l  and enantioenriched (+)-l indicated an enan- 
tiomeric excess of 290% (500 MHz, 'H NMR) for the 
latter; one recrystallization from hexanedacetone raised 
the enantiomeric excess to 298%. Similarly, the diac- 
etate (+)-2 was converted into the diol (-)-1 using 
Seebach's transesterifkation method (Scheme 1): and the 
diol (-)-1 was converted into its Mosher ester as de- 
scribed for (+)-l, The optical purity of the diol (-)-l was 
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found to be t 98%. The same enantiomeric excess of the 
diacetate (+)-2 was also determined via chiral shift 
analysis [(+)-Eu(hfc)s, CDC131. 

Alcohol (+)-3 was subjected to buffered CF3C03H (CH2- 
CldO "C) which gave the syn-epoxide 7 as a single 
diastereomer in 84% yield (Scheme 3).1° Oxidation/ 
elimination of epoxide (+)-7 to the bromoenone (+)-8 
proceeded cleanly in 89% yield with Cr03(pyridine)z.11 
Lastly, deprotection of the TBS ether in (+)-e was 
accomplished using DeShong's protocol (HzS~F&H&N),~~ 
which furnished (+)-bromoxone (6) in 74% yield.13 The 
melting point of synthetic (+)-6 was slightly higher than 
that reported for natural (+)-6 (138-139 "C vs 123-127 
"C);3a this difference is most likely due to slight impurities 
in the isolated material.14 The [ a l~  reported for natural 
(+I-bromoxone (6) was +220 (c 0.09, CHC13). We found 
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that synthetic (+)-6 was only sparingly soluble in CHC1,; 
we recorded the rotation of our synthetic (+)-6 in acetone 
and found [ah +193 (c 2.50, acetone). The optical purity 
of (+)-bromoxone (6) was determined to be 299% ee by 
chiral HPLC ana1y~is.l~ In an analogous fashion, (-1-3 
was converted into (-)-bromoxone (6) (mp 137-139 "C; 
[ab -188 (c 1.85, acetone). 

Since the absolute configuration of (+I-bromoxone (6) 
had been determined via X-ray analysis of its acetate, 
conversion of (+)- and (-)-1 into (+)- and (-)-bromoxone 
(61, respectively, established which enantiomer of the 
diacetate (&I-2 was hydrolyzed by the enzyme. The 
diacetate (-)-2 with the configuration (1R,2S,3S,4R) was 
preferentially hydrolyzed (Scheme 4). This is consistent 
with the simple model 9 proposed for enzymatic action 
of Pseudomonas cepacia (Amano PS-30) toward secondary 
alcohols.16 

Thus, (+)- and (-)-bromoxone (6) were synthesized in 
a very concise fashion from the enzymatically resolved 
diols (+I- and (-1-1 in 25% and 29% overall yields, 
respectively. These diols should find use in the construc- 
tion of more complex targets. Studies along these lines 
are in progress. 
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